满分5 > 初中数学试题 >

某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ) A.(2,-3...

某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)
将(-2,3)代入y=即可求出k的值,再根据k=xy解答即可. 【解析】 设反比例函数解析式为y=,将点(-2,3)代入解析式得k=-2×3=-6, 符合题意的点只有点A:k=2×(-3)=-6. 故选A.
复制答案
考点分析:
相关试题推荐
要使二次根式manfen5.com 满分网有意义,则x应满足( )
A.x>2
B.x≥2
C.x≥-2
D.x≠2
查看答案
下列各数中,最小的实数是( )
A.-3
B.-1
C.0
D.manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知抛物线y=manfen5.com 满分网x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=manfen5.com 满分网x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案
阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:manfen5.com 满分网AB•r1+manfen5.com 满分网AC•r2=manfen5.com 满分网AB•h,∴r1+r2=h
(1)理解与应用
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:manfen5.com 满分网
(2)类比与推理
边长为2的正方形内任意一点到各边的距离的和等于______
(3)拓展与延伸
若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.
manfen5.com 满分网
查看答案
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)×销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg)101113
销售量y(kg)__________________
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.