先根据图形翻折变换的性质得出BC=BD,∠BDE=∠C=90°,再根据AD=BD可知AB=2BC,AE=BE,故∠A=30°,由锐角三角函数的定义可求出BC的长,设BE=x,则CE=6-x,在Rt△BCE中根据勾股定理即可得出BE的长.
【解析】
∵△BDE△BCE反折而成,
∴BC=BD,∠BDE=∠C=90°,
∵AD=BD,
∴AB=2BC,AE=BE,
∴∠A=30°,
在Rt△ABC中,
∵AC=6,
∴BC=AC•tan30°=6×=2,
设BE=x,则CE=6-x,
在Rt△BCE中,
∵BC=2,BE=x,CE=6-x,
∴BE2=CE2+BC2,即x2=(6-x)2+(2)2,解得x=4.
故答案为:4.