由题意可知,OE为对角线AC的中垂线,则CE=AE=5,S△AEC=2S△AOE=10,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.
【解析】
如图,连接EC.
由题意可得,OE为对角线AC的垂直平分线,
∴CE=AE,S△AOE=S△COE=5,
∴S△AEC=2S△AOE=10.
∴AE•BC=10,又BC=4,
∴AE=5,
∴EC=5.
在Rt△BCE中,由勾股定理得:BE===3.
∵∠EBC+∠EOC=90°+90°=180°,
∴B、C、O、E四点共圆,
∴∠BOE=∠BCE.
(另【解析】
∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,
∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°-∠OBC=90°-(∠BCE+∠ECO)
∴∠BOE+(90°-(∠BCE+∠ECO))+∠EAO=90°,
化简得:∠BOE-∠BCE-∠ECO+∠EAO=0
∵OE为AC中垂线,
∴∠EAO=∠ECO.
代入上式得:∠BOE=∠BCE.)
∴sin∠BOE=sin∠BCE=.
故答案为:.