满分5 > 初中数学试题 >

在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C...

manfen5.com 满分网在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.
(1)写出A、C两点的坐标;
(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;
(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.
(1)利用一次函数图象上点的坐标特征求解; (2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解; (3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值. 【解析】 (1)在直线解析式y=2x+2中,令y=0,得x=-1;x=0,得y=2, ∴A(-1,0),C(0,2); (2)当0<m<1时,依题意画出图形,如答图1所示. ∵PE=CE,∴直线l是线段PC的垂直平分线, ∴MC=MP,又C(0,2),M(0,m), ∴P(0,2m-2); 直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m), 设直线DP的解析式为y=kx+b,则有 ,解得:k=-2,b=2m-2, ∴直线DP的解析式为:y=-2x+2m-2. 令y=0,得x=m-1,∴Q(m-1,0). 已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ, ∴,即, 整理得:(m-1)2=,解得:m=(>1,不合题意,舍去)或m=, ∴m=. (3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE. 依题意画出图形,如答图2所示. 由(2)可知,OQ=m-1,OP=2m-2,由勾股定理得:PQ=(m-1); ∵A(-1,0),Q(m-1,0),B(a,0),∴AQ=m,AB=a+1; ∵OA=1,OC=2,由勾股定理得:CA=. ∵直线l∥x轴,∴△CDE∽△CAB, ∴; 又∵CD•AQ=PQ•DE,∴, ∴,即, 解得:m=. ∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=. ∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为______
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.
(3)连接AD,当OC∥AD时,
①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.

manfen5.com 满分网 查看答案
用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=manfen5.com 满分网a+b-1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:
manfen5.com 满分网
根据图中提供的信息填表:
 格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积
多边形181 
多边形273 
一般格点多边形abS
则S与a、b之间的关系为S=______(用含a、b的代数式表示).
查看答案
某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).
(1)列出满足题意的关于x的不等式组,并求出x的取值范围;
(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?
查看答案
manfen5.com 满分网在Rt△ABC中,∠C=90°,AC=1,BC=manfen5.com 满分网,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):
以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:
∠ABC=______,∠A′BC=______,OA+OB+OC=______
查看答案
manfen5.com 满分网如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA.
求证:四边形ABCD是菱形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.