满分5 > 初中数学试题 >

如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正...

manfen5.com 满分网如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x-2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式; (2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标; (3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=-代入得:-=-x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标. 【解析】 (1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3), 设抛物线解析式为y=a(x-2)2+3, 将A(4,0)坐标代入得:0=4a+3,即a=-, 则抛物线解析式为y=-(x-2)2+3=-x2+3x; (2)设直线AC解析式为y=kx+b(k≠0), 将A(4,0)与C(0,3)代入得:, 解得:, 故直线AC解析式为y=-x+3, 与抛物线解析式联立得:, 解得:或, 则点D坐标为(1,); (3)存在,分两种情况考虑: ①当点M在x轴上方时,如答图1所示: 四边形ADMN为平行四边形,DM∥AN,DM=AN, 由对称性得到M(3,),即DM=2,故AN=2, ∴N1(2,0),N2(6,0); ②当点M在x轴下方时,如答图2所示: 过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP, ∴MP=DQ=,NP=AQ=3, 将yM=-代入抛物线解析式得:-=-x2+3x, 解得:xM=2-或xM=2+, ∴xN=xM-3=--1或-1, ∴N3(--1,0),N4(-1,0). 综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(--1,0),N4(-1,0).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.
查看答案
某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.
(1)求打折前每本笔记本的售价是多少元?
(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?
查看答案
manfen5.com 满分网如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度为i=1:1.2(垂直高度CE与水平宽度DE的比),上底BC=10m,天桥高度CE=5m,求天桥下底AD的长度?(结果精确到0.1m,参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
查看答案
有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=manfen5.com 满分网上的概率.
查看答案
manfen5.com 满分网2013年6月6日第一届南亚博览会在昆明举行.某校对七年级学生开展了“南博会知多少?”的调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果分为“不太了解”、“基本了解”、“比较了解”、“非常了解”四个等级,对调查结果进行统计后,绘制了如下不完整的条形统计图:
根据以上统计图提供的信息,回答下列问题:
(1)若“基本了解”的人数占抽样调查人数的25%,此次调查抽取了______学生;
(2)补全条形统计图;
(3)若该校七年级有600名学生,请估计“比较了解”和“非常了解”的学生共有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.