满分5 > 初中数学试题 >

某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要10...

某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?
(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
(1)先设购进甲,乙两种钢笔每支各需a元和b元,根据购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元列出方程组,求出a,b的值即可; (2)先设购进甲钢笔x支,乙钢笔y支,根据题意列出5x+10y=1000和不等式组6y≤x≤8y,把方程代入不等式组即可得出20≤y≤25,求出y的值即可; (3)先设利润为W元,得出W=2x+3y=400-y,根据一次函数的性质求出最大值. 【解析】 (1)设购进甲,乙两种钢笔每支各需a元和b元,根据题意得: , 解得:, 答:购进甲,乙两种钢笔每支各需5元和10元; (2)设购进甲钢笔x支,乙钢笔y支,根据题意可得: , 解得:20≤y≤25, ∵x,y为整数, ∴y=20,21,22,23,24,25共六种方案, ∵5x=1000-10y>0, ∴0<y<100, ∴该文具店共有6种进货方案; (3)设利润为W元,则W=2x+3y, ∵5x+10y=1000, ∴x=200-2y, ∴代入上式得:W=400-y, ∵W随着y的增大而减小, ∴当y=20时,W有最大值,最大值为W=400-20=380(元).
复制答案
考点分析:
相关试题推荐
为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.
(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:
(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.
(3)在投稿篇数为9篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
manfen5.com 满分网
查看答案
如图,直线y=k1x+b(k1≠0)与双曲线y=manfen5.com 满分网(k2≠0)相交于A(1,2)、B(m,-1)两点.
(1)求直线和双曲线的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式;
(3)观察图象,请直接写出不等式k1x+b<manfen5.com 满分网的解集.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图所示,已知在平行四边形ABCD中,BE=DF
求证:AE=CF.
查看答案
先化简,再求值:manfen5.com 满分网÷(a-manfen5.com 满分网),其中a=manfen5.com 满分网
查看答案
如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=manfen5.com 满分网BD
其中正确结论的为    (请将所有正确的序号都填上).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.