满分5 > 初中数学试题 >

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4), C(2,0)...

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网
(1)先假设出函数解析式,利用三点法求解函数解析式. (2)设出M点的坐标,利用S=S△AOM+S△OBM-S△AOB即可进行解答; (3)分OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;OB是对角线时,由图可知点A与P应该重合. 【解析】 (1)设此抛物线的函数解析式为: y=ax2+bx+c(a≠0), 将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得: 解得, 所以此函数解析式为:y=; (2)∵M点的横坐标为m,且点M在这条抛物线上, ∴M点的坐标为:(m,), ∴S=S△AOM+S△OBM-S△AOB =×4×(-m2-m+4)+×4×(-m)-×4×4 =-m2-2m+8-2m-8 =-m2-4m, =-(m+2)2+4, ∵-4<m<0, 当m=-2时,S有最大值为:S=-4+8=4. 答:m=-2时S有最大值S=4. (3)设P(x,x2+x-4). 当OB为边时,根据平行四边形的性质知PB∥PQ, ∴Q的横坐标的绝对值等于P的横坐标的绝对值, 又∵直线的解析式为y=-x, 则Q(x,-x). 由PQ=OB,得|-x-(x2+x-4)|=4, 解得x=0,-4,-2±2. x=0不合题意,舍去. 如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4). 由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2)或(4,-4).
复制答案
考点分析:
相关试题推荐
在一座高为10 m的大楼顶C测得旗杆底部B的俯角α为60°,旗杆顶端A的仰角β为20°.(manfen5.com 满分网取1.73,tan20°≈0.3646)
(1)求建筑物与旗杆的水平距离BD;(2)计算旗杆高.(精确到0.1 m)

manfen5.com 满分网 查看答案
某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:

原料名称
饮料名称
A20克40克
B30克20克
(1)有几种符合题意的生产方案写出解析过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
查看答案
如图所示,已知▱ABCD中,AC的平行线MN分别交DA,DC的延长线于M,N,交AB,BC于P,Q,求证:QM=NP.

manfen5.com 满分网 查看答案
在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合做完成这项工程所需的天数.
查看答案
已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.