满分5 > 初中数学试题 >

如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(-5,a)两点.A...

如图,已知直线AB与x轴交于点C,与双曲线manfen5.com 满分网交于A(3,manfen5.com 满分网)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.

manfen5.com 满分网
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答; (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形. 【解析】 (1)∵双曲线过A(3,), ∴k=20. 把B(-5,a)代入,得 a=-4. ∴点B的坐标是(-5,-4).(2分) 设直线AB的解析式为y=mx+n, 将A(3,)、B(-5,-4)代入,得 , 解得:, ∴直线AB的解析式为:;(4分) (2)四边形CBED是菱形.理由如下:(5分) 点D的坐标是(3,0),点C的坐标是(-2,0). ∵BE∥x轴, ∴点E的坐标是(0,-4). 而CD=5,BE=5,且BE∥CD. ∴四边形CBED是平行四边形.(6分) 在Rt△OED中,ED2=OE2+OD2, ∴ED====5, ∴ED=CD. ∴平行四边形CBED是菱形.(8分)
复制答案
考点分析:
相关试题推荐
今年1月份底,民政局将全市为冰冻受灾地区捐赠的物资打包成件,其中御寒衣物3000件,食品1300件.现计划租用甲、乙两种货车共10辆将这批物资全部运往受灾地区,已知甲种货车可装衣物400件和食品100件,乙种货车可装衣物、食品各200件
(1)民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则民政局应选择哪种方案可使运费最少?最少运费是多少元?
查看答案
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.请你猜想:线段AF与线段EC有怎样的数量关系?并对你的猜想加以证明.

manfen5.com 满分网 查看答案
为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:
manfen5.com 满分网
(1)请将表示成绩类别为“中”的条形统计图补充完整;
(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是______度;
(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?
查看答案
先化简:(manfen5.com 满分网)÷manfen5.com 满分网.再从1,2,3中选一个你认为合适的数作为a的值代入求值.
查看答案
解不等式组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.