2的倒数是( )
A.2
B.-2
C.
D.-
考点分析:
相关试题推荐
如图,抛物线y=x
2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,连接BF.
(1)证明:AF平分∠BAC;
(2)作∠ABC的角平分线交AF于点D,(尺规作图,保留作图痕迹,不写作法)
(3)若EF=2,DE=3,求tan∠EBF的值.
查看答案
如图,已知直线AB与x轴交于点C,与双曲线
交于A(3,
)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.
查看答案
今年1月份底,民政局将全市为冰冻受灾地区捐赠的物资打包成件,其中御寒衣物3000件,食品1300件.现计划租用甲、乙两种货车共10辆将这批物资全部运往受灾地区,已知甲种货车可装衣物400件和食品100件,乙种货车可装衣物、食品各200件
(1)民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则民政局应选择哪种方案可使运费最少?最少运费是多少元?
查看答案
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.请你猜想:线段AF与线段EC有怎样的数量关系?并对你的猜想加以证明.
查看答案