满分5 > 初中数学试题 >

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买...

2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
           型 号
金    额
投资金额x(万元)
Ⅰ型设备Ⅱ型设备
x5x24
补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可; (2)根据y=y1+y2得出关于x的二次函数,求出二次函数最值即可. 【解析】 (1)设y1=kx,将(5,2)代入得: 2=5k, 解得:k=0.4, 故y1=0.4x, 设y2=ax2+bx,将(2,2.4),(4,3.2)代入得: , 解得:a=-0.2,b=1.6, ∴y2=-0.2x2+1.6x; (2)假设投资购买Ⅰ型用x万元、Ⅱ型为(10-x)万元, y=y1+y2=0.4x-0.2(10-x)2+1.6(10-x); =-0.2x2+2.8x-4, 当x=-=7时,y==5.8万元, ∴当购买Ⅰ型用7万元、Ⅱ型为3万元时能获得的最大补贴金额,最大补贴金额为5.8万元.
复制答案
考点分析:
相关试题推荐
如图,对面积为s的△ABC逐次进行以下操作:
第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1
第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2
…;
按此规律继续下去,可得到△AnBnCn,则其面积Sn=   
manfen5.com 满分网 查看答案
设函数y=x2-(2k+1)x+2k-4的图象如图所示,它与x轴交于A,B两点,且线段OA与OB的长度之比为1:3,则k=   
manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=manfen5.com 满分网,则图中阴影部分的面积是   
manfen5.com 满分网 查看答案
已知m、n是方程x2-2010x+2011=0的两根,则(n2-2011n+2012)与(m2-2011m+2012)的积是    查看答案
若(7x-a)2=49x2-bx+9,则|a+b|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.