满分5 > 初中数学试题 >

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交...

如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

manfen5.com 满分网
(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可; (2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可; (3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切线,由切割线定理得出(2+FG)2=BG×AG=2BG2, 在Rt△BFG中,由勾股定理得出BG2=FG2-BF2,推出FG2-4FG-12=0,求出FG即可. (1)证明:∵BD是⊙O的切线, ∴∠DBA=90°, ∵CH⊥AB, ∴CH∥BD, ∴△AEC∽△AFD, ∴=, ∴AE•FD=AF•EC. (2)证明:连接OC,BC, ∵CH∥BD, ∴△AEC∽△AFD,△AHE∽△ABF, ∴==, ∵CE=EH(E为CH中点), ∴BF=DF, ∵AB为⊙O的直径, ∴∠ACB=∠DCB=90°, ∵BF=DF, ∴CF=DF=BF(直角三角形斜边上的中线等于斜边的一半), 即CF=BF. (3)【解析】 ∵BF=CF=DF(已证),EF=BF=2, ∴EF=FC, ∴∠FCE=∠FEC, ∵∠AHE=∠CHG=90°, ∴∠FAH+∠AEH=90°,∠G+∠GCH=90°, ∵∠AEH=∠CEF, ∴∠G=∠FAG, ∴AF=FG, ∵FB⊥AG, ∴AB=BG, 连接OC,BC, ∵BF切⊙O于B, ∴∠FBC=∠CAB, ∵OC=OA,CF=BF, ∴∠FCB=∠FBC,∠OCA=∠OAC, ∴∠FCB=∠CAB, ∵∠ACB=90°, ∴∠ACO+∠BCO=90°, ∴∠FCB+∠BCO=90°, 即OC⊥CG, ∴CG是⊙O切线, ∵GBA是⊙O割线,AB=BG(已证), FB=FE=2, ∴由切割线定理得:(2+FG)2=BG×AG=2BG2, 在Rt△BFG中,由勾股定理得:BG2=FG2-BF2, ∴FG2-4FG-12=0, 解得:FG=6,FG=-2(舍去), 由勾股定理得: AB=BG==4, ∴⊙O的半径是2.
复制答案
考点分析:
相关试题推荐
我市新都生活超市准备一次性购进A、B两种品牌的饮料100箱,此两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.
品牌AB
进价(元/箱)6549
售价(元/箱)8062
(1)求y关于x的函数关系式;
(2)由于资金周转原因,用于超市购进A、B两种饮料的总费用不超过5600元,并要求获得利润不低于1380元,则从两种饮料箱数上考虑,共有哪几种进货方案?(利润=售价-进价)
查看答案
已知一次函数y1=x+m的图象与反比例函数manfen5.com 满分网的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2
(1)求一次函数的解析式;
(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.

manfen5.com 满分网 查看答案
某种子培育基地用A、B、C、D四种型号的小麦种子共2000粒进行发芽实验,将从中选出发芽率高的种子进行推广.通过实验可知,C型号种子的发芽率为95%,根据实验数据绘制了如下两幅尚不完整的统计图.
manfen5.com 满分网
(1)根据图甲求用于实验的D型号种子的粒数,并将图乙的统计图补充完整.
(2)通过计算,回答应选哪一个型号的种子进行推广.
查看答案
如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.
manfen5.com 满分网
查看答案
如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕B点顺时针旋转180°后的图形;
(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.