满分5 > 初中数学试题 >

如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,C...

manfen5.com 满分网如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=manfen5.com 满分网BC,连接DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形; (2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度. (1)证明:在▱ABCD中,AD∥BC,且AD=BC. ∵F是AD的中点, ∴DF=. 又∵CE=BC, ∴DF=CE,且DF∥CE, ∴四边形CEDF是平行四边形; (2)【解析】 如图,过点D作DH⊥BE于点H. 在▱ABCD中,∵∠B=60°, ∴∠DCE=60°. ∵AB=4, ∴CD=AB=4, ∴CH=2,DH=2. 在▱CEDF中,CE=DF=AD=3,则EH=1. ∴在Rt△DHE中,根据勾股定理知DE==.
复制答案
考点分析:
相关试题推荐
已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,且该方程的根都是整数,求k的值.
查看答案
列方程或方程组解应用题:
某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.
查看答案
已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.
查看答案
解不等式组:manfen5.com 满分网
查看答案
计算:(1-manfen5.com 满分网+|-manfen5.com 满分网|-2cos45°+(manfen5.com 满分网-1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.