满分5 > 初中数学试题 >

在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时...

在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.
(1)如图1,直接写出∠ABD的大小(用含α的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
manfen5.com 满分网
(1)求出∠ABC的度数,即可求出答案; (2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°-α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可; (3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°-α=15°,求出即可. 【解析】 (1)∵AB=AC,∠A=α, ∴∠ABC=∠ACB=(180°-∠A)=90°-α, ∵∠ABD=∠ABC-∠DBC,∠DBC=60°, 即∠ABD=30°-α; (2)△ABE是等边三角形, 证明:连接AD,CD,ED, ∵线段BC绕B逆时针旋转60°得到线段BD, 则BC=BD,∠DBC=60°, ∵∠ABE=60°, ∴∠ABD=60°-∠DBE=∠EBC=30°-α,且△BCD为等边三角形, 在△ABD与△ACD中 ∴△ABD≌△ACD, ∴∠BAD=∠CAD=∠BAC=α, ∵∠BCE=150°, ∴∠BEC=180°-(30°-α)-150°=α=∠BAD, 在△ABD和△EBC中 ∴△ABD≌△EBC, ∴AB=BE, ∴△ABE是等边三角形; (3)∵∠BCD=60°,∠BCE=150°, ∴∠DCE=150°-60°=90°, ∵∠DEC=45°, ∴△DEC为等腰直角三角形, ∴DC=CE=BC, ∵∠BCE=150°, ∴∠EBC=(180°-150°)=15°, ∵∠EBC=30°-α=15°, ∴α=30°.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.
(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.

manfen5.com 满分网 查看答案
阅读下面材料:
小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠GHN=∠DEP=45°时,求正方形MNPQ的面积.
小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)
请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为______
(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=manfen5.com 满分网,则AD的长为______
manfen5.com 满分网
查看答案
第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.
manfen5.com 满分网
(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为______平方千米;
(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;
(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).
第七届至第十届园博会游客量和停车位数量统计表:
 日接待游客量
(万人次)
单日最多接待游客量
(万人次)
停车位数量
(个)
第七届0.86约3000
第八届2.38.2约4000
第九届8(预计)20(预计)约10500
第十届1.9(预计)7.4(预计)______

查看答案
manfen5.com 满分网如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.
(1)求证:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=manfen5.com 满分网,求OE的长.
查看答案
manfen5.com 满分网如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=manfen5.com 满分网BC,连接DE,CF.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠B=60°,求DE的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.