满分5 > 初中数学试题 >

如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=. (1)...

manfen5.com 满分网如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=manfen5.com 满分网
(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.
(1)由AB的长求出OA与OB的长,根据AD,BC为圆的切线,利用切线的性质得到三角形AOD与三角形BOC都为直角三角形,利用勾股定理即可求出OD与OC的长; (2)过D作DE垂直于BC,可得出BE=AD,DE=AB,在直角三角形DEC中,利用勾股定理求出CD的长,根据三边对应成比例的三角形相似即可得证; (3)过O作OF垂直于CD,根据(2)中两三角形相似,利用相似三角形的对应角相等得到一对角相等,利用AAS得到三角形OCF与三角形OCB全等,由全等三角形的对应边相等得到OF=OB,即OF为圆的半径,即可确定出CD为圆O的切线. (1)【解析】 ∵AD、BC是⊙O的两条切线, ∴∠OAD=∠OBC=90°, 在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=, 根据勾股定理得:OD==,OC==; (2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°, ∴四边形ABED为矩形, ∴BE=AD=2,DE=AB=6,EC=BC-BE=, 在Rt△EDC中,根据勾股定理得:DC==, ∵===, ∴△DOC∽△OBC; (3)证明:过O作OF⊥DC,交DC于点F, ∵△DOC∽△OBC, ∴∠BCO=∠FCO, ∵在△BCO和△FCO中, , ∴△BCO≌△FCO(AAS), ∴OB=OF, 则CD是⊙O切线.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC翻折得到△EBC.
(1)四边形ABEC一定是什么四边形?
(2)证明你在(1)中所得出的结论.

manfen5.com 满分网 查看答案
某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3) 的对应变化的情况,如下表:
时间x(分钟)10203040
水量y(m33750350032503000
(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3
(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.
查看答案
 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B′; 
(2)写出点A′,C′,D′的坐标; 
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.

manfen5.com 满分网 查看答案
manfen5.com 满分网韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果;
(2)求韦玲胜出的概率.
查看答案
解方程:3(x+4)=x.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.