如图1,在平面直角坐标系中,点M(0,-3),⊙M与x轴交于点A、B,与y轴交于点C、E;抛物线y=ax
2+(4a-2)x-8(a≠0)经过A、C两点;
(1)求点A、B、C的坐标;
(2)当a取何值时,抛物线y=ax
2+(4a-2)x-8(a≠0)的对称轴与⊙M相切?
(3)如图2,当抛物线的顶点D在第四象限内时,连接BC、BD,且tan∠CBD=
.
①试确定a的值;
②设此时的抛物线与x轴的另一个交点是点F,在抛物线的对称轴上找一点T,使|TM-TF|达到最大,并求出最大值.(请在图2中作出点T)
查看答案
如图,在矩形ABCD中,AB=9,AD=
,点P是边BC上的动点(点P不与点B、点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.
(1)求∠CQP的度数;
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)求y与x之间的函数关系式.
查看答案