如图1,在平面直角坐标系中,点M(0,-3),⊙M与x轴交于点A、B,与y轴交于点C、E;抛物线y=ax
2+(4a-2)x-8(a≠0)经过A、C两点;
(1)求点A、B、C的坐标;
(2)当a取何值时,抛物线y=ax
2+(4a-2)x-8(a≠0)的对称轴与⊙M相切?
(3)如图2,当抛物线的顶点D在第四象限内时,连接BC、BD,且tan∠CBD=
.
①试确定a的值;
②设此时的抛物线与x轴的另一个交点是点F,在抛物线的对称轴上找一点T,使|TM-TF|达到最大,并求出最大值.(请在图2中作出点T)
查看答案