满分5 > 初中数学试题 >

如图所示,直线AB与反比例函数的图象相交于A,B两点,已知A(1,4). (1)...

如图所示,直线AB与反比例函数manfen5.com 满分网的图象相交于A,B两点,已知A(1,4).
(1)求反比例函数的解析式;
(2)直线AB交x轴于点C,连接OA,当△AOC的面积为6时,求直线AB的解析式.

manfen5.com 满分网
(1)根据点A的坐标代入即可得出解析式; (2)设出点C的坐标,利用三角形AOC的面积即可得出点C的坐标,再结合点A的坐标,即可得出直线AB的解析式. 【解析】 (1)由已知得反比例函数解析式为y=, ∵点A(1,4)在反比例函数的图象上, ∴4=,∴k=4,(4分) ∴反比例函数的解析式为y=.(6分) (2)设C的坐标为(-a,0)(a>0) ∵S△AOC=6,∴(8分) 解得:a=3,∴C(-3,0)(9分) 设直线AB的解析式为:y=kx+b ∵C(-3,0),A(1,4)在直线AB上 ∴(11分) 解得:k=1,b=3,∴直线AB的解析式为:y=x+3.(12分)
复制答案
考点分析:
相关试题推荐
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点 D作DE∥A'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=manfen5.com 满分网时,求AD的长,并判断此时直线A'C与⊙E的位置关系.
manfen5.com 满分网
查看答案
如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰直角△CDE,连接AD,
(1)当点E运动过程中∠BCE与∠ACD的关系是______
(2)AD与BC有什么位置关系?说明理由.
(3)四边形ABCD的面积是否有最大值?如果有,最大值是多少?如果没有,说明理由.

manfen5.com 满分网 查看答案
如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线l的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:manfen5.com 满分网≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

manfen5.com 满分网 查看答案
全国实施“限塑令”于今年6月1日满一年,某报三名记者当日分别在武汉三大商业集团门口,同时采用问卷调查的方式,随机调查了一定数量的顾客,在“限塑令”实施前后使用购物袋的情况.下面是这三名记者根据汇总的数据绘制的统计图.
manfen5.com 满分网
请你根据以上信息解答下列问题:
(1)图1中从左到右各长方形的高度之比为2:8:8:3:3:1,又知此次调查中使用4个和5个塑料购物袋的顾客一共24人,问这三名记者一共调查了多少人?
(2)“限塑令”实施前,如果每天约有6000人到该三大商场购物,根据记者所调查的一定数量顾客平均一次购物使用塑料购物袋的平均数,估计这三大商业集团每天需要为顾客提供多少个塑料购物袋?
(3)据武汉晚报报道,自去年6月1日到去年12月底,三大商业集团下属所有门店,塑料袋的使用量与上一年同期相比,从12927万个下降到3355万个,降幅为______(精确到百分之一).这一结果与图2中的收费塑料购物袋______%比较,你能得出什么结论,谈谈你的感想.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.