满分5 > 初中数学试题 >

如图,在直角坐标系xOy中,点P为函数y=x2在第一象限内的图象上的任一点,点A...

如图,在直角坐标系xOy中,点P为函数y=manfen5.com 满分网x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=manfen5.com 满分网x2有无其它公共点并说明理由.

manfen5.com 满分网
(1)由点的坐标知OA=OB,O为A,B的中点,利用三角形中位线定理可得(1)结论; (2)要证四边形为平行四边形,由题找到两对边平行且相等,就可以了.在进一步证菱形,验证平行四边形相邻边相等就行了; (3)判断有无公共点,要联立方程,看方程是否有解,若有解就存在. (1)证明:∵A(0,1),B(0,-1), ∴OA=OB.(1分) 又∵BQ∥x轴, ∴HA=HQ;(2分) (2)证明:①由(1)可知AH=QH,∠AHR=∠QHP, ∵AR∥PQ, ∴∠RAH=∠PQH, ∴△RAH≌△PQH.(3分) ∴AR=PQ, 又∵AR∥PQ, ∴四边形APQR为平行四边形.(4分) ②设P(m,m2), ∵PQ∥y轴,则Q(m,-1),则PQ=1+m2. 过P作PG⊥y轴,垂足为G. 在Rt△APG中,AP=+1=PQ, ∴平行四边形APQR为菱形;(6分) (3)【解析】 设直线PR为y=kx+b, 由OH=CH,得H(,0),P(m,m2). 代入得:, ∴. ∴直线PR为.(7分) 设直线PR与抛物线的公共点为(x,x2),代入直线PR关系式得:x2-x+m2=0,(x-m)2=0, 解得x=m.得公共点为(m,m2). 所以直线PH与抛物线y=x2只有一个公共点P.(8分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB、DA交于P,过C点作PD的垂线交PD的延长线于E,且PB=BO,连接OA.
(1)求证:OA∥CD;
(2)求线段BC:DC的值;
(3)若CD=18,求DE的长.
查看答案
为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余费用由区财政部门补贴.
添置多媒体所需费用(万元)补贴百分比
不大于10万元部分80%
大于10万元不大于m万元部分50%
大于m万元部分20%
其中学校所在的区不同,m的取值也不相同,但市财政部门将m调控在20至40之间(20≤m≤40).试解决下列问题:
(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;
(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;
(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.
查看答案
如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是   
manfen5.com 满分网 查看答案
一条双向数据处理链如图,从A端口输入的值将依次运算在B端口显示,从B端口输入的值将依次运算在A端口显示,一个数n无论从哪一端输入,最后显示的结果都一样,那么这样的数n的个数有    个.
manfen5.com 满分网 查看答案
如图,在直角坐标系中放入一个直角三角形纸片,OA=2,OB=3,将纸片沿着斜边AB翻折后,点O落在第一象限内的点D处,则D点的坐标为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.