满分5 > 初中数学试题 >

已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)...

已知抛物线yn=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(____________);依此类推第n条抛物线yn的顶点坐标为(____________);所有抛物线的顶点坐标满足的函数关系式是______
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得的线段长,直接写出AA1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

manfen5.com 满分网
(1)因为点A(0,0)在抛物线y1=-(x-a1)2+a1上,可求得a1=1,则y1=-(x-1)2+1;令y1=0,求得A1(2,0),b1=2;再由点A1(2,0)在抛物线y2=-(x-a2)2+a2上,求得a2=4,y2=-(x-4)2+4. (2)求得y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9),依此类推,yn的顶点坐标为(n2,n2).因为所有抛物线顶点的横坐标等于纵坐标,所以顶点坐标满足的函数关系式是:y=x. (3)①由A(0,0),A1(2,0),求得AA1=2;yn=-(x-n2)2+n2,令yn=0,求得An-1(n2-n,0),An(n2+n,0),所以An-1An=(n2+n)-(n2-n)=2n; ②设直线解析式为:y=kx-2k,设直线y=kx-2k与抛物线yn=-(x-n2)2+n2交于E(x1,y1),F(x2,y2)两点,联立两式得一元二次方程,得到x1+x2=2n2-k,x1•x2=n4-n2-2k.然后作辅助线,构造直角三角形,求出EF2的表述式为:EF2=(k2+1)[4n2•(1-k)+k2+8k],可见当k=1时,EF2=18为定值.所以满足条件的直线为:y=x-2. 【解析】 (1)∵当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A(0,0), ∴0=-(0-a1)2+a1,解得a1=1或a1=0. 由已知a1>0,∴a1=1, ∴y1=-(x-1)2+1. 令y1=0,即-(x-1)2+1=0,解得x=0或x=2, ∴A1(2,0),b1=2. 由题意,当n=2时,第2条抛物线y2=-(x-a2)2+a2经过点A1(2,0), ∴0=-(2-a2)2+a2,解得a2=1或a2=4, ∵a1=1,且已知a2>a1, ∴a2=4, ∴y2=-(x-4)2+4. ∴a1=1,b1=2,y2=-(x-4)2+4. (2)抛物线y2=-(x-4)2+4,令y2=0,即-(x-4)2+4=0,解得x=2或x=6. ∵A1(2,0), ∴A2(6,0). 由题意,当n=3时,第3条抛物线y3=-(x-a3)2+a3经过点A2(6,0), ∴0=-(6-a3)2+a3,解得a3=4或a3=9. ∵a2=4,且已知a3>a2, ∴a3=9, ∴y3=-(x-9)2+9. ∴y3的顶点坐标为(9,9). 由y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9), 依此类推,yn的顶点坐标为(n2,n2). ∵所有抛物线顶点的横坐标等于纵坐标, ∴顶点坐标满足的函数关系式是:y=x. (3)①∵A(0,0),A1(2,0), ∴AA1=2. yn=-(x-n2)2+n2,令yn=0,即-(x-n2)2+n2=0, 解得x=n2+n或x=n2-n, ∴An-1(n2-n,0),An(n2+n,0),即An-1An=(n2+n)-(n2-n)=2n. ②存在. 设过点(2,0)的直线解析式为y=kx+b,则有:0=2k+b,得b=-2k, ∴y=kx-2k. 设直线y=kx-2k与抛物线yn=-(x-n2)2+n2交于E(x1,y1),F(x2,y2)两点, 联立两式得:kx-2k=-(x-n2)2+n2,整理得:x2+(k-2n2)x+n4-n2-2k=0, ∴x1+x2=2n2-k,x1•x2=n4-n2-2k. 过点F作FG⊥x轴,过点E作EG⊥FG于点G,则EG=x2-x1, FG=y2-y1=[-(x2-n2)2+n2]-[-(x1-n2)2+n2]=(x1+x2-2n2)(x1-x2)=k(x2-x1). 在Rt△EFG中,由勾股定理得:EF2=EG2+FG2, 即:EF2=(x2-x1)2+[k(x2-x1)]2=(k2+1)(x2-x1)2=(k2+1)[(x1+x2)2-4x1•x2], 将x1+x2=2n2-k,x1•x2=n4-n2-2k代入,整理得:EF2=(k2+1)[4n2•(1-k)+k2+8k], 当k=1时,EF2=(1+1)(1+8)=18, ∴EF=2为定值, ∴k=1满足条件,此时直线解析式为y=x-2. ∴存在满足条件的直线,该直线的解析式为y=x-2.
复制答案
考点分析:
相关试题推荐
某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:
●操作发现:
在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是______(填序号即可)
①AF=AG=manfen5.com 满分网AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;
●类比探究:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:______
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.
(1)证明PA是⊙O的切线;
(2)求点B的坐标;
(3)求直线AB的解析式.
查看答案
如图1,一辆汽车的背面,有一种特殊性状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.
(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:sin60°=manfen5.com 满分网,cos60°=manfen5.com 满分网,tan60°=manfen5.com 满分网manfen5.com 满分网≈26.851,可使用科学记算器)
manfen5.com 满分网
查看答案
生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约manfen5.com 满分网;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:
manfen5.com 满分网
(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;
(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)
(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)
查看答案
manfen5.com 满分网如图,在平面直角坐标系中,反比例函数y=manfen5.com 满分网(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.