如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F=
,CD=a,请用a表示⊙O的半径;
(3)求证:GF
2-GB
2=DF•GF.
考点分析:
相关试题推荐
在信宜市某“三华李”种植基地有A、B两个品种的树苗出售,已知A种比B种每株多2元,买1株A种树苗和2株B种树苗共需20元.
(1)问A、B两种树苗每株分别是多少元?
(2)为扩大种植,某农户准备购买A、B两种树苗共360株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.
查看答案
如图,反比例函数
的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(-3,n).
(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.
查看答案
如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
查看答案
当前,“校园手机”现象已经受到社会广泛关注,某数学兴趣小组对“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:
频数分布表
(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
查看答案
在某校举行的“中国学生营养日”活动中,设计了抽奖环节:在一只不透明的箱子中有3个球,其中2个红球,1个白球,它们除颜色外均相同.
(1)随机摸出一个球,恰好是红球就能中奖,则中奖的概率是多少?
(2)同时摸出两个球,都是红球 就能中特别奖,则中特别奖的概率是多少?(要求画树状图或列表求解)
查看答案