满分5 > 初中数学试题 >

在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,...

在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为______三角形;当△ABC三边分别为6、8、11时,△ABC为______三角形.
(2)猜想,当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可; (2)根据(1)中的计算作出判断即可; (3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解. 【解析】 (1)两直角边分别为6、8时,斜边==10, ∴△ABC三边分别为6、8、9时,△ABC为锐角三角形; 当△ABC三边分别为6、8、11时,△ABC为钝角三角形; 故答案为:锐角;钝角; (2)当a2+b2>c2时,△ABC为锐角三角形; 当a2+b2<c2时,△ABC为钝角三角形; 故答案为:>;<; (3)∵c为最长边,2+4=6, ∴4≤c<6, a2+b2=22+42=20, ①a2+b2>c2,即c2<20,0<c<2, ∴当4≤c<2时,这个三角形是锐角三角形; ②a2+b2=c2,即c2=20,c=2, ∴当c=2时,这个三角形是直角三角形; ③a2+b2<c2,即c2>20,c>2, ∴当2<c<6时,这个三角形是钝角三角形.
复制答案
考点分析:
相关试题推荐
已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是______
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.
(1)求证:△OEF是等边三角形;
(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)

manfen5.com 满分网 查看答案
2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.
(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;
(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.
查看答案
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.

manfen5.com 满分网 查看答案
贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加manfen5.com 满分网各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:
甲校参加汇报演出的师生人数统计表
百分比人数
话剧50%m
演讲12%6
其他n19
(1)m=______,n=______
(2)计算乙校的扇形统计图中“话剧”的圆心角度数;
(3)哪个学校参加“话剧”的师生人数多?说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.