满分5 > 初中数学试题 >

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称...

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

manfen5.com 满分网
(1)根据二次函数y=ax2+bx+c的对称轴为x=-,求得抛物线的对称轴,因为函数与X轴的交点是y=0,列方程即可求得; (2)分别以AC,AB为对角线各可求得一点,再以AC,AB为边求得一点; (3)首先可求得梯形DEOC的面积,根据题意:在OE上找点F,使OF=,此时S△COF=××3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M,设直线CM的解析式为y=kx+3,它经过点F(-,0),则-k+3=0(11分)解之,得k=∴直线CM的解析式为y=x+3. 【解析】 (1)①对称轴x=-=-2; ②当y=0时,有x2+4x+3=0, 解之,得x1=-1,x2=-3, ∴点A的坐标为(-3,0). (2)满足条件的点P有3个,分别为(-2,3),(2,3),(-4,-3). (3)存在. 当x=0时,y=x2+4x+3=3 ∴点C的坐标为(0,3), ∵DE∥y轴,AO=3,EO=2,AE=1,CO=3, ∴△AED∽△AOC ∴即, ∴DE=1. ∴S梯形DEOC=(1+3)×2=4=4, 在OE上找点F,使OF=, 此时S△COF=××3=2,直线CF把四边形DEOC分成面积相等的两部分,交抛物线于点M. 设直线CM的解析式为y=kx+3,它经过点F(-,0). 则-k+3=0,(11分) 解之,得k=, ∴直线CM的解析式为y=x+3.
复制答案
考点分析:
相关试题推荐
如图1,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)如图2,若∠AED=2∠EAD,AC=6.求DE的长.
manfen5.com 满分网
查看答案
为迎接“六•一”儿童节,锻炼孩子们的实践能力,磨练他们的意志,重庆幸福小学组织二年级学生到沙坪坝区素质教育基地五云山寨进行为期5天的社会实践活动,其中一个实践项目是钓鱼.某次钓鱼课结束后,小明结合全班人数及钓鱼条数的情况进行了统计,发现全班30名男生、20名女生的钓鱼条数共有0、1、2、3、4、5六种情况,并制成如下两幅不完整的统计图:
manfen5.com 满分网
(1)请填空:全班同学钓鱼条数的平均数是______,女生钓鱼条数的中位数是______
(2)请将扇形统计图及条形统计图补充完整;
(3)现要从钓鱼条数为4条、5条的同学中各选1人代表班级,参加年级的“六•一庆典经验交流会”,请你用列表或画树状图的方法,求出所选两名同学刚好都是男生的概率.
查看答案
一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式粗加工后销售精加工后销售
每吨获利(元)10002000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
查看答案
先化简,再求值:manfen5.com 满分网,其中x满足方程x2-x-2=0.
查看答案
如图,每一个小方格都是边长为1的单位正方形,△ABC的三个顶点都在格点上,以点O为坐标原点建立平面直角坐标系.
(1)画出△ABC先向左平移5个单位,再向上平移1个单位的△A1B1C1,并写出点B1的坐标______
(2)画出将△ABC绕点0顺时针旋转90°后的△A2B2C2,并求出点A旋转A2所经过的路径长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.