如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD于H,BC=BH=2.动点F从点D出发,以每秒1个单位的速度沿DH运动到点H停止,在运动过程中,过点F作FE⊥AD交折线D-C-B于点E,将纸片沿直线EF折叠,点C、D的对应点分别是点C
1、D
1.设F点运动的时间是x秒(x>0).
(1)当点E和点C重合时,求运动时间x的值;
(2)在整个运动过程中,设△EFD
1或四边形EFD
1C
1与梯形ABCD重叠部分面积为S,请直接写出S与x之间的函数关系式和相应自变量x的取值范围;
(3)平移线段CD,交线段BH于点G,交线段AD于点P.在直线BC上存在点I,使△PGI为等腰直角三角形.请求出线段IB的所有可能的长度.
查看答案
2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
云端服务器数量y1(台) | 32 | 34 | 36 | 38 | 40 | 42 | 44 |
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y
2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y
1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y
2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p
1(万元)与月份x满足函数关系式:p
1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p
2(万元)与月份x满足函数关系式:p
2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:17
2=289,18
2=324,QUOTE 87
2=7569,88
2=7744,89
2=7921)19
2=361)
查看答案