在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若DE=
BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.
考点分析:
相关试题推荐
某商场欲购进A、B两种水杯进行销售.已知每个A种水杯的进价比每个B种水杯的进价贵10元,并且800元购进B种水杯数量是500元购进A种水杯数量的2倍.
(1)求A、B两种水杯的进价分别是多少元?
(2)该商场计划按(1)的进价购进A、B两种水杯共45个,且A、B两种水杯售价分别定为70元和55元.若该商场计划购买A、B两种水杯的费用不超过2000元,全部售出后所得总利润不低于760元.请你通过计算为该商场设计进货方案.
查看答案
如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)
(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)
查看答案
“校园手机”现象越来越受到社会的关注.学期初,某市小记者团随机调查了该市市区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的条形和扇形统计图:
(1)求这次调查的家长人数,并补全条形统计图;
(2)求扇形统计图中表示“赞成”的圆心角的度数约是多少;
(3)若该市市区有42000名中学生,请你估计该市市区持“无所谓”态度的中学生的人数大约是多少人?
查看答案
如图,有两个可以自由转动的转盘A、B,转盘A被均匀分成4等份,每份标上数字1、2、3、4四个数字;转盘B被均匀分成6等份,每份标上数字1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:
(1)同时转动转盘A与B;
(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲得1分;如果所得的积是奇数,那么乙得1分.
你认为这样的规则是否公平?请你说明理由;如果不公平,请你修改规则使该游戏对双方公平.
查看答案
(1)解方程组:
(2)化简:
.
查看答案