满分5 >
初中数学试题 >
某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(...
某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )
分数(分) | 89 | 92 | 95 | 96 | 97 |
评委(位) | 1 | 2 | 2 | 1 | 1 |
A.92分
B.93分
C.94分
D.95分
考点分析:
相关试题推荐
在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为( )
A.9.63×10
-5B.96.3×10
-6C.0.963×10
-5D.963×10
-4
查看答案
-2的倒数是( )
A.2
B.
C.-
D.-0.2
查看答案
如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.
(1)当t为何值时,PQ∥BC?
(2)设四边形PQCB的面积为y,求y关于t的函数关系式;
(3)四边形PQCB面积能否是△ABC面积的
?若能,求出此时t的值;若不能,请说明理由;
(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)
查看答案
(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S
△ABC=S
△BCD.
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S
△ABC=
×BC×AF,S
△BCD=
BC×DE
所以S
△ABC=S
△BCD由此我们可以得到以下的结论:像图1这样,______.
(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S
△ADC>S
△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明
查看答案
某地盛产一种香菇,上市时,经销商按市场价格10元/千克收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存90天,同时,平均每天有6千克的香菇损坏不能出售.若经销商存放x 天后,将这批香菇一次性出售.
(1)设这批香菇出售所获利润为y元,试写出y与x之间的函数关系式;
(2)经销商将这批香菇存放多少天后出售,获得利润最大?最大利润是多少?
(3)为了避免过度浪费,经销商决定出售这批香菇时销售量不低于1700千克,则销售这批香菇的成本最多为多少元?(销售成本包括进货成本以及支出的各种费用)
查看答案