已知:如图1,⊙O与射线MN相切于点M,⊙O的半径为2,AC是⊙O的直径,A与M重合,△ABC是⊙O的内接三角形,且∠C=30°,
计算:弦AB=______,
的长度______(结果保留π)
探究一:如图2,若⊙O和△ABC沿射线MN方向作无滑动的滚动,
(1)直接写出:点B第一次在射线MN上时,圆心O所走过的路线的长______点B第二次在射线MN上时,圆心O所走过的路线的长______(结果保留π)
(2)过点A、C分别作AD⊥MN于D,CE⊥MN于E,连接OD、OE,小明通过作图猜想:OD与OE相等,你认为小明的猜想正确吗?请说明你的理由
探究二:
如图3,将半径为R、圆心角为50°的扇形纸片AOB,在射线MN的方向作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为______(用含R的代数式表示,结果保留π).
考点分析:
相关试题推荐
某单位准备印制一批书面材料,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲厂的印刷费用y(千元)与书面材料数量x(千份)的关系见下表:
书面材料数量x(千份) | | 1 | 2 | 3 | 4 | 5 | 6 | … |
甲厂的印刷费用y(千元) | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | … |
乙厂的印刷费用y(千元)与书面材料数量x(千份)的函数关系图象如图所示.
(1)请你直接写出甲厂的:制版费、印刷费用y与x的函数解析式和其书面材料印刷单价,并在图中坐标系中画出甲厂印刷费用y与x的函数图象.
(2)根据图象,试求出当x在什么范围内时乙厂比甲厂的印刷费用低?
(3)现有一客户需要印8千份书面材料,想从甲、乙两厂中选择一家印刷费用低的厂家,如果甲厂想把8千份书面材料的印制工作承揽下来,在不降低制版费的前提下,每份书面材料最少降低多少元?
查看答案
如图1,△ABC与△EFA为等腰直角三角形,AC与AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,将△EFA绕点A顺时针旋转,当AF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设AE、AF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.
(1)问:在图2中,始终与△AGC相似的三角形有______及______;
(2)设CG=x,BH=y,GH=z,求:
①y关于x的函数关系式;
②z关于x的函数关系式;(只要求根据第(1)问的结论说明理由)
(3)直接写出:当x为何值时,AG=AH.
查看答案
美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示)
(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为______ 公顷,比2000年底增加了______ 公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是______年;
(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率?
查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?
查看答案
如图,已知△ABC中,∠ABC=45°,AD是BC边上的高,
(1)尺规作图:在∠ABC的内部作∠CBM,使得∠CBM=∠DAC(要求:只保留作图痕迹,不写作法和证明);
(2)若射线BM与AC交于点E,与AD交于点F,且CD=3,试求线段DF的长.
查看答案