如图1,在平面直角坐标系中,拋物线y=ax
2+c与x轴正半轴交于点F(4,0)、与y轴正半轴交于点E(0,4),边长为4的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1)求拋物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线与边AB交于点P且同时与边CD交于点Q.设点A的坐标为(m,n)
①当PO=PF时,分别求出点P和点Q的坐标及PF所在直线l的函数解析式;
②当n=2时,若P为AB边中点,请求出m的值;
(3)若点B在第(2)①中的PF所在直线l上运动,且正方形ABCD与抛物线有两个交点,请直接写出m的取值范围.
查看答案
已知:如图1,⊙O与射线MN相切于点M,⊙O的半径为2,AC是⊙O的直径,A与M重合,△ABC是⊙O的内接三角形,且∠C=30°,
计算:弦AB=______,
的长度______(结果保留π)
探究一:如图2,若⊙O和△ABC沿射线MN方向作无滑动的滚动,
(1)直接写出:点B第一次在射线MN上时,圆心O所走过的路线的长______点B第二次在射线MN上时,圆心O所走过的路线的长______(结果保留π)
(2)过点A、C分别作AD⊥MN于D,CE⊥MN于E,连接OD、OE,小明通过作图猜想:OD与OE相等,你认为小明的猜想正确吗?请说明你的理由
探究二:
如图3,将半径为R、圆心角为50°的扇形纸片AOB,在射线MN的方向作无滑动的滚动至扇形A′O′B′处,则顶点O经过的路线总长为______(用含R的代数式表示,结果保留π).
查看答案