满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,...

如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).
(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?
(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?
(3)当t为何值时,△EDQ为直角三角形?

manfen5.com 满分网
(1)先用t表示出PC及CQ的长,再求出=,即可得出结论; (2)先由PE∥CD,得△APE∽△ACD,根据相似三角形的对应边的比相等,求出PE的长,再根据四边形EQDP是平行四边形,得PE=DQ,可用含t的代数式表示出DQ的长,联立PE的表达式列方程求出t的值即可; (3)由于∠EDQ≠90°,所以当△EDQ为直角三角形时,可分两种情况进行讨论:①∠EQP=90°;②∠QED=90°.两种情况都可以通过证明三角形相似,列出比例关系式,从而求出t的值. 【解析】 (1)如图1, ∵点P以1厘米/秒的速度从点A沿AC向终点C运动,点Q以1.25厘米/秒的速度从点B沿BC向终点C运动, ∴AP=t,BQ=1.25t, ∴PC=AC-AP=4-t,QC=BC-BQ=5-1.25t, ∴==1-,==1-, ∴=, ∴PQ∥AB; (2)如图2,∵PE∥CD, ∴△AEP∽△ADC, ∴=, ∴=, ∴EP=. ∵四边形EQDP是平行四边形, ∴EP=QD,即=2-1.25t, 解得t=1. 故当t为1秒时,四边形EQDP能成为平行四边形; (3)分两种情况讨论: ①如图3,当∠EQD=90°时,显然有EQ=PC=4-t, 又∵EQ∥AC, ∴△EDQ∽△ADC, ∴=,即=, 解得t=2.5(秒); ②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4-t. 在Rt△ACD中,∵AC=4厘米,CD=3厘米, ∴AD==5, ∴CN==. ∵∠EDQ=∠CDA,∠QED=∠ACD=90°, ∴△EDQ∽△CDA, ∴=, =, 解得t=3.1(秒). 综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.
复制答案
考点分析:
相关试题推荐
已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
查看答案
如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:manfen5.com 满分网≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为______米;
(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.

manfen5.com 满分网 查看答案
如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数manfen5.com 满分网的图象经过对角线BD的中点M,与BC,CD的边分别交于点P、Q.
(1)直接写出点M,C的坐标;
(2)求直线BD的解析式;
(3)线段PQ与BD是否平行?并说明理由.

manfen5.com 满分网 查看答案
九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
月均用水量x(t)频数(户)频率
0<x≤560.12
5<x≤10 0.24
10<x≤15160.32
15<x≤20100.20
20<x≤254 
25<x≤3020.04
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.