如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,-3),B是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.
(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.
①直接写出直线AB的解析式;
②当CD=PD时,求m的值;
③求△ACP的面积S.(用含m的代数式表示)
(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.
考点分析:
相关试题推荐
由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.
(1)一月Iphone4手机每台售价为多少元?
(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?
查看答案
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径OA=5,弦AC的长是6.
①求DE的长;
②请直接写出
的值.
查看答案
如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.
查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
如图,方格纸中的每个小正方形的边长均为1.
(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;
(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)
答:①中的图形______,②中的图形______.
查看答案