满分5 > 初中数学试题 >

已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴...

已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0).
(1)求点C的坐标;
(2)求过A、B、C三点的抛物线的解析式和对称轴;
(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标.

manfen5.com 满分网
(1)由同角的余角相等得到一对角相等,再由一对直角相等,得到三角形AOB与三角形AOC相似,由相似得比例,求出OC的长,即可确定出C坐标; (2)由B与C坐标设出抛物线的二根式,将A坐标代入求出a的值,确定出抛物线解析式,求出对称轴即可; (3)连接AP,CP,过P作PQ垂直于x轴,将x=m代入抛物线解析式表示出P的纵坐标,即为PQ的长,三角形APC面积=梯形APQO面积+三角形PQC面积-三角形AOC面积,列出S关于m的二次函数解析式,利用二次函数的性质求出S最大时m的值,即可确定出此时P的坐标. 【解析】 (1)∵∠AOB=∠BAC=90°, ∴∠ABO+∠BAO=90°,∠ABO+∠ACB=90°, ∴∠BAO=∠ACB, 又∵∠AOB=∠COA=90°, ∴△ABO∽△CAO, ∴=,即OA2=OB•OC, ∵A(0,2),B(-1,0),即OA=2,OB=1, ∴OC=4, 则C(4,0); (2)设抛物线解析式为y=a(x+1)(x-4), 将A(0,2)代入得:2=-4a,即a=-, 则过A、B、C三点的抛物线的解析式为y=-(x+1)(x-4)=-x2+x+2,对称轴为直线x=; (3)连接AP,CP,过P作PQ⊥x轴,交x轴于点Q, 将x=m代入抛物线解析式得:n=-m2+m+4, ∵OA=2,OC=4,OQ=m,PQ=-m2+m+4,QC=4-m, ∴S=S△APC=S梯形APQO+S△PQC-S△AOC=×m×(2-m2+m+4)+×(4-m)×(-m2+m+4)-×2×4=-m2+4m+4=-(m-2)2+8, ∵S关于m的二次函数解析式中二次项系数为-1<0,即抛物线开口向下, ∴当m=2时,S最大值为8,此时P(2,5).
复制答案
考点分析:
相关试题推荐
如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
manfen5.com 满分网
查看答案
已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)若p=2q,求方程的另一根;
(3)求证:抛物线y=x2+px+q与x轴有两个交点.
查看答案
某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从乒乓球、羽毛球、篮球和排球四个方面调查了若干名学生,在还没有绘制成功的“折线统计图”与“扇形统计图”中,请你根据已提供的部分信息解答下列问题.
(1)在这次调查活动中,一共调查了______名学生,并请补全统计图.
(2)“羽毛球”所在的扇形的圆心角是______度.
(3)若该校有学生1200名,估计爱好乒乓球运动的约有多少名学生?

manfen5.com 满分网 查看答案
如图在平面直角坐标系xOy中,函数y=manfen5.com 满分网(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D与点C、B在同一直线上,已知AC=32米,CD=16米,求荷塘宽BD为多少米?(取manfen5.com 满分网,结果保留整数)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.