满分5 > 初中数学试题 >

在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5. (Ⅰ)探究新知 ...

在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知
如图①,⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.
(1)求证:内切圆的半径r1=1; 
(2)求tan∠OAG的值;
(Ⅱ)结论应用
(1)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2的值;
(2)如图③,若半径为rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、AB相切,⊙On与BC、AB相切,⊙O1、⊙O2、…、⊙On均与AB相切,求rn的值.
manfen5.com 满分网
(Ⅰ)(1)根据切线的性质以及正方形的判定得出四边形CEOF是正方形,进而得出CE=CF=r1,再利用切线长定理求出即可; (2)在Rt△AOG中,根据r1=1,AG=3-r1=2,求出tan∠OAG的值即可; (Ⅱ)(1)由tan∠OAG=,知tan∠O1AD=,同理可得:tan∠O2BE==,进而得出AD=2r2,DE=2r2,BE=3r2,即可求出r2=; (2)根据(1)中所求可以得出AD=2rn,DE=2rn,…,MB=3rn,得到2rn+2rn+…+3rn=5,求出即可. (Ⅰ)(1)证明:在图①中,连接OE,OF,OA. ∵⊙O是△ABC的内切圆,与三边分别相切于点E、F、G. ∴OF⊥BC,OE⊥AC,∠ACB=90°, ∴四边形CEOF是矩形, 又∵EO=OF, ∴四边形CEOF是正方形, CE=CF=r1. 又∵AG=AE=3-r1,BG=BF=4-r1, AG+BG=5, ∴(3-r1)+(4-r1)=5. 即r1=1. (2)【解析】 连接OG,在Rt△AOG中, ∵r1=1,AG=3-r1=2, tan∠OAG==;                  (Ⅱ)(1)【解析】 连接O1A、O2B,作O1D⊥AB交于点D、O2E⊥AB交于点E,AO1、BO2分别平分∠CAB、∠ABC. 由tan∠OAG=,知tan∠O1AD=, 同理可得:tan∠O2BE==, ∴AD=2r2,DE=2r2,BE=3r2. ∵AD+DE+BE=5, r2=;                                  (2)【解析】 如图③,连接O1A、OnB,作O1D⊥AB交于点D、O2E⊥AB交于点E、…、OnM⊥AB交于点M. 则AO1、BOn分别平分∠CAB、∠ABC. tan∠O1AD=,tan∠OnBM=, AD=2rn,DE=2rn,…,MB=3rn, 又∵AD+DE+…+MB=5, 2rn+2rn+…+3rn=5, (2n+3)rn=5, rn=.
复制答案
考点分析:
相关试题推荐
如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式和直线BD解析式;
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:
(1)CG=BH;
(2)FC2=BF•GF;
(3)manfen5.com 满分网=manfen5.com 满分网

manfen5.com 满分网 查看答案
周日里,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑啊,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.
(1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.
(2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑.
请你来评判,这两种游戏规则哪种公平,并说明理由噢!
查看答案
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.