满分5 > 初中数学试题 >

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),...

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=______
(1)由四边形ODEF是等腰梯形,易得四边形OABC是平行四边形,由图2可得S△AOC=8,连接AC交x轴于R点,易得OR=4,由勾股定理可求得OA的值,即m的值; (2)由OB=2RO=8,AR⊥OB,即可求得B、C两点的坐标,易证得平行四边形OABC是菱形,则可得OF=3OA; (3)在OB上找一点N使ON=OG,连接NH,易证得△GOH≌△NOH,则可得GH+AH=AH+HN,根据垂线段最短可知:当AN是点A到OB的垂线段时,且H点是AN与OM的交点,继而求得答案. 【解析】 (1)如图1,∵四边形ODEF是等腰梯形, ∴OA=BC且OA∥BC, ∴四边形OABC是平行四边形, 由已知可得:S△AOC=8,连接AC交x轴于R点, 又∵A(4,2),C(n,-2), ∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8, ∴OR=4, ∴m=OA===2; 故答案为:2; (2)∵OB=2RO=8,CR=AR=2,AR⊥OB, ∴B(8,0),C(4,-2)且平行四边形OABC是菱形, ∴OF=3AO=3×2=6; (3)如图3,在OB上找一点N使ON=OG,连接NH, ∵OM平分∠AOB, ∴∠AOM=∠BOM, 在△GOH和△NOH中, , ∴△GOH≌△NOH(SAS), ∴GH=NH, ∴GH+AH=AH+HN=AN, 根据垂线段最短可知:当AN是点A到OB的垂线段时,且H点是AN与OM的交点, ∴GH+AH的最小值为2.
复制答案
考点分析:
相关试题推荐
已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=manfen5.com 满分网OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.

manfen5.com 满分网 查看答案
如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)

manfen5.com 满分网 查看答案
如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.
(1)求证:四边形EFCD是菱形;
(2)如果AB=8,求D、F两点间的距离.

manfen5.com 满分网 查看答案
学校组织学生乘汽车去自然保护区野营,前manfen5.com 满分网路段为平路,其余路段为坡路.已知汽车在平路上行驶的速度为60km/h,在坡路上行驶的速度为30km/h,汽车从学校到自然保护区一共行驶了6.5h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解题过程.
问:______
查看答案
小明、小华和小亮三位小朋友到游乐场游玩,现要从三位小朋友中随机选出两位玩跷跷板游戏.
(1)请运用树状图或列表法,求小明恰好被选中的概率;
(2)求恰好选中小明、小华两位小朋友的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.