满分5 > 初中数学试题 >

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根...

若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-manfen5.com 满分网,x1•x2=manfen5.com 满分网.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|=manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.

manfen5.com 满分网
(1)当△ABC为直角三角形时,由于AC=BC,所以△ABC为等腰直角三角形,过C作CE⊥AB于E,则AB=2CE.根据本题定理和结论,得到AB=,根据顶点坐标公式,得到CE=||=,列出方程,解方程即可求出b2-4ac的值; (2)当△ABC为等边三角形时,解直角△ACE,得CE=AE=,据此列出方程,解方程即可求出b2-4ac的值. 【解析】 (1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE. ∵抛物线与x轴有两个交点, ∴△=b2-4ac>0,则|b2-4ac|=b2-4ac. ∵a>0,∴AB=, 又∵CE=||=, ∴, ∴, ∴, ∵b2-4ac>0, ∴b2-4ac=4; (2)当△ABC为等边三角形时, 由(1)可知CE=, ∴, ∵b2-4ac>0, ∴b2-4ac=12.
复制答案
考点分析:
相关试题推荐
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)判断DE与⊙O的位置关系并说明理由;
(2)若tanC=manfen5.com 满分网,DE=2,求AD的长.

manfen5.com 满分网 查看答案
如图,定义:若双曲线y=manfen5.com 满分网(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=manfen5.com 满分网(k>0)的对径.
(1)求双曲线y=manfen5.com 满分网的对径.
(2)若双曲线y=manfen5.com 满分网(k>0)的对径是10manfen5.com 满分网,求k的值.
(3)仿照上述定义,定义双曲线y=manfen5.com 满分网(k<0)的对径.

manfen5.com 满分网 查看答案
manfen5.com 满分网5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4:17:15.结合统计图回答下列问题:
(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?
(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?
(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?
查看答案
如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,
(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法)
(2)折叠后重合部分是什么图形?说明理由.
manfen5.com 满分网
查看答案
在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4米,∠θ1=40°,∠θ2=36°,楼梯占用地板的长度增加率多少米?(计算结果精确到0.01米,参考数据:tan40°=0.839,tan36°=0.727)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.