满分5 > 初中数学试题 >

将两个全等的直角三角形ABC和DBE如图①方式摆放,其中∠ACB=∠DEB=90...

将两个全等的直角三角形ABC和DBE如图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的直角三角形ABC绕点B顺时针方向旋转,且∠ABD=30°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的直角三角形DBE绕点B顺时针方向旋转,且∠ABD=65°,其它条件不变,如图③,你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
manfen5.com 满分网
(1)由Rt△ABC≌Rt△DBE推出BC=BE,连接BF,根据HL证Rt△BCF≌Rt△BEF,推出CF=EF即可; (2)画出图形,此时AF+EF≠DE,而是AF-EF=DE; (3)(1)中猜想结论不成立,关系式是AF=EF+DE,连接BF,根据HL证Rt△BEF≌Rt△BCF,推出EF=FC,由AF=AC+FC可推出AF=DE+EF. (1)证明:由Rt△ABC≌Rt△DBE知:BC=BE. 连接BF. ∵在Rt△BCF和Rt△BEF中 , ∴Rt△BCF≌Rt△BEF(HL), ∴CF=EF, ∵AC=DE,CF+FA=CA, ∴AF+EF=DE; (2)【解析】 如图2所示, 此时AF+EF≠DE; (3)【解析】 (1)中猜想结论不成立,关系式是AF=EF+DE.理由是: 连接BF. 在Rt△BEF和Rt△BCF中 , ∴Rt△BEF≌Rt△BCF(HL), ∴EF=FC, ∵AC=DE, 由AF=AC+FC知:AF=DE+EF.
复制答案
考点分析:
相关试题推荐
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.
(1)从口袋中随机取出一个球(不放回),接着再取出一个球.请用树形图或列表的方法求取出两个都是黄色球的概率;
(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多1,且从口袋中取出一个红色球的概率为manfen5.com 满分网,请问小明又放入该口袋中红色球和黄色球各多少个?
查看答案
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?manfen5.com 满分网
查看答案
如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.
(1)求证:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求图中阴影部分的面积.

manfen5.com 满分网 查看答案
某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.
类型
价格
A型B型
进价(元/盏)4065
标价(元/盏)60100
(1)这两种台灯各购进多少盏?
(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.