根据旋转的性质可得AF=AC,再根据等边对等角可得∠AFC=∠C,判断出①正确;AE>AD,从而求出∠E≠∠ADE,即∠B≠∠BDF,得到BF≠DF,然后根据DE=EF-DF,CF=BC-BF得到DE≠CF,判断出②错误;根据两组角对应相等两三角形相似可得△ADE和△FDB相似,判断出③正确;根据平角定义表示出∠BFD,根据三角形内角和定理表示出∠CAF,从而得到∠BFD=∠CAF,判断出④正确.
【解析】
由旋转的性质得,AF=AC,
∴∠AFC=∠C,故①正确;
∵AE=AB>AD,
∴∠E≠∠ADE,
即∠B≠∠BDF,
∴BF≠DF,
∵DE=EF-DF,CF=BC-BF,EF=BC,
∴DE≠CF,故②错误;
∵△ABC绕点A旋转至△AEF,
∴∠B=∠E,
又∵∠ADE=∠BDF,
∴△ADE∽△FDB,故③正确;
由旋转的性质,∠C=∠AFE,
∴∠BFD=180°-∠AFC-∠AFE=180°-2∠C,
在△ACF中,∠CAF=180°-∠AFC-∠C=180°-2∠C,
∴∠BFD=∠CAF,故④正确;
综上所述,正确的结论有①③④.
故答案为:①③④.