满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点...

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.manfen5.com 满分网
(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可. (2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合条件的P点. (3)由于△MAC的腰和底没有明确,因此要分三种情况来讨论:①MA=AC、②MA=MC、②AC=MC;可先设出M点的坐标,然后用M点纵坐标表示△MAC的三边长,再按上面的三种情况列式求解. 【解析】 (1)将A(-1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得: , 解得: ∴抛物线的解析式:y=-x2+2x+3. (2)连接BC,直线BC与直线l的交点为P; ∵点A、B关于直线l对称, ∴PA=PB, ∴BC=PC+PB=PC+PA 设直线BC的解析式为y=kx+b(k≠0),将B(3,0),C(0,3)代入上式,得: ,解得: ∴直线BC的函数关系式y=-x+3; 当x=1时,y=2,即P的坐标(1,2). (3)抛物线的对称轴为:x=-=1,设M(1,m),已知A(-1,0)、C(0,3),则: MA2=m2+4,MC2=(3-m)2+1=m2-6m+10,AC2=10; ①若MA=MC,则MA2=MC2,得: m2+4=m2-6m+10,得:m=1; ②若MA=AC,则MA2=AC2,得: m2+4=10,得:m=±; ③若MC=AC,则MC2=AC2,得: m2-6m+10=10,得:m1=0,m2=6; 当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去; 综上可知,符合条件的M点,且坐标为 M(1,)(1,-)(1,1)(1,0).
复制答案
考点分析:
相关试题推荐
以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.
manfen5.com 满分网manfen5.com 满分网
查看答案
为了提倡低碳经济,某公司为了更好得节约能源,决定购买一批节省能源的10台新机器.现有甲、乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.
(1)求a,b的值;
(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供 选择;
(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
甲型乙型
价格(万元/台)ab
产量(吨/月)240180

查看答案
2011年全国两会在京召开,公众最关心哪些问题?901班学生就老百姓最关注的两会热点问题,在网络上发布了相应的调查问卷.到目前为止,共有不同年龄段的2880人参与,具体情况统计如下:
(1)请将统计表中遗漏的数据补上;
(2)求扇形图中表示30-35岁的扇形的圆心角的度数?
(3)在参加调查的30-35岁段中随机抽取一人,关心物价调控或医疗改革的概率是多少?
关心问题频数频率
收入分配900.25
住房问题0.15
物价调控360.1
医疗改革18
养老保险0.15
其他108
合计3601


manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=manfen5.com 满分网(x>0)的图象上,点D的坐标为(4,3).
(1)求k的值.
(2)若将菱形ABCD向右平移,使点D落在反比例函数y=manfen5.com 满分网(x>0)的图象上,求菱形ABCD平移的距离.

manfen5.com 满分网 查看答案
如图,将矩形ABCD沿对角线AC剪刀,再把△ACD沿CA方向平移得到△A1C1D1
(1)在不添加辅助线时,写出其中的两对全等三角形;
(2)证明△A1AD1≌△CC1B.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.