满分5 > 初中数学试题 >

在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,...

在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.
(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;
(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;
(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.

manfen5.com 满分网
(1)先作AK⊥BC于K,FG⊥BC于G,根据等腰梯形的性质,可得BK=(BC-AD)=3,在Rt△ABK中,利用勾股定理可求出AK=4,由于AK、FG垂直于同一直线故平行,可得比例线段,求出FG=,利用面积公式可得S△BEF=-x2+x(7≤x≤10,因为BF最大取5,故BE最小取7,又不能超过10); (2)根据题意,结合(1)中面积的表达式,可以得到S梯形ABCD=-x2+x,即14=-x2+x,解得,x1=7,x2=5(不合题意,舍去); (3)仍然按照(1)和(2)的步骤和方法去做就可以了,注意不是分成相等的两份,而是1:2就可以了,得到关于x的一元二次方程,先求出根的判别式△,由于△<0,故不存在实数根. 【解析】 (1)由已知条件得: 梯形周长为24,高4,面积为28. 过点F作FG⊥BC于G ∴BK=(BC-AD)=×(10-4)=3, ∴AK==4, ∵EF平分等腰梯形ABCD的周长,设BE长为x, ∴BF=12-x, 过点A作AK⊥BC于K ∴△BFG∽△BAK, ∴, 即:, 则可得:FG=×4 ∴S△BEF=BE•FG=-x2+x(7≤x≤10);(3分) (2)存在(1分) 由(1)得:-x2+x=14, x2-12x+35=0, (x-7)(x-5)=0, 解得x1=7,x2=5(不合题意舍去) ∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7; (3)不存在(1分) 假设存在,第一种情况:显然是:S△BEF:SAFECD=1:2,(BE+BF):(AF+AD+DC+CE)=1:2(1分), 梯形ABCD周长的三分之一为=8,面积的三分之一为.因为BE=X, 所以BF=(8-X) ∵FM∥AH, ∴△FBM∽△ABH, ∴BF:AB=FM:AH, ∴=, ∴FM=, ∴△BEF的面积=, 当 梯形ABCD的面积=时, ∴=, 整理方程得:-3x2+24x-70=0, △=576-840<0 ∴不存在这样的实数x. 即不存在线段EF将等腰梯形ABCD的周长和面积. 同时分成1:2的两部分.(2分) 第二种情况:显然是:S△BEF:SAFECD=2:1,(BE+BF):(AF+AD+DC+CE)=2:1(1分), 梯形ABCD周长的三分之一为=8,面积的三分之一为.因为BE=x, 所以BF=(8-x) ∵FM∥AH, ∴△FBM∽△ABH, ∴BF:AB=FM:AH, ∴, ∴FM=, ∴△BEF的面积=, 当 梯形ABCD的面积=时, ∴=, 整理方程得:3x2-24x+140=0, △<0 ∴不存在这样的实数x. 即不存在线段EF将等腰梯形ABCD的周长和面积. 同时分成1:2的两部分.
复制答案
考点分析:
相关试题推荐
如图,已知反比例函数manfen5.com 满分网和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

manfen5.com 满分网 查看答案
已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0,③x2+2x-3=0,…(n)x2+(n-1)x-n=0.
(1)请解上述一元二次方程①、②、③、(n);
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
查看答案
如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网是y关于x的反比例函数,且图象在第二、四象限,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.