满分5 > 初中数学试题 >

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的...

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

manfen5.com 满分网
(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长; (2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线; (3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. (1)【解析】 在矩形OABC中,设OC=x,则OA=x+2 ∴x(x+2)=15 ∴x1=3,x2=-5 ∵x2=-5(不合题意,舍去) ∴OC=3,OA=5; (2)证明:连接O′D; ∵在矩形OABC中,, ∴△0CE≌△ABE(SAS), ∴EA=EO, ∴∠1=∠2; ∵在⊙O′中,O′O=O′D, ∴∠1=∠3, ∴∠3=∠2, ∴O′D∥AE; ∵DF⊥AE, ∴DF⊥O′D, ∵点D在⊙O′上,O′D为⊙O′的半径, ∴DF为⊙O′切线; (3)【解析】 不同意.理由如下: ①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=0C=3; ∵APl=OA=5, ∴AH=4, ∴OH=l, 求得点P1(1,3)同理可得:P4(9,3)(7分); ②当OA=OP时, 同上可求得P2(4,3),P3(-4,3),(9分) ∴在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)
复制答案
考点分析:
相关试题推荐
已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
(1)当三角板绕点C旋转到CD与OA垂直时(如图1),易证:OD+OE=manfen5.com 满分网OC;
(2)当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
查看答案
如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.

manfen5.com 满分网 查看答案
如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E.∠P=30°,∠ABC=50°,求∠A的度数.

manfen5.com 满分网 查看答案
如图,点A的坐标为(3,3),点B的坐标为(4,0).
(1)请在直角坐标系中画出△ABC绕着点C逆时针旋转90°后的图形△A′B′C;
(2)点A′的坐标为(______),点B′的坐标为(______).

manfen5.com 满分网 查看答案
解下列方程:
(1)2x2-x-1=0;
(2)3x(x-1)=2(x-1)2
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.