满分5 > 初中数学试题 >

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次...

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E为x轴上的点,且S△AOE=manfen5.com 满分网,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值. (2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形. (3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算. 【解析】 (1)解x2-7x+12=0,得x1=4,x2=3. ∵OA>OB ∴OA=4,OB=3. 在Rt△AOB中,由勾股定理有AB==5, ∴sin∠ABC=. (2)∵点E在x轴上,S△AOE=,即AO×OE=, 解得OE=.∴E(,0)或E(-,0). 由已知可知D(6,4),设yDE=kx+b, 当E(,0)时有, 解得. ∴yDE=x-. 同理E(-,0)时,yDE=. 在△AOE中,∠AOE=90°,OA=4,OE=; 在△AOD中,∠OAD=90°,OA=4,OD=6; ∵, ∴△AOE∽△DAO. (3)根据计算的数据,OB=OC=3, ∴AO平分∠BAC, ①AC、AF是邻边,点F在射线AB上时,AF=AC=5, 所以点F与B重合, 即F(-3,0), ②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM, 点F(3,8). ③AC是对角线时,做AC垂直平分线L,AC解析式为y=-x+4,直线L过(,2),且k值为(平面内互相垂直的两条直线k值乘积为-1), L解析式为y=x+,联立直线L与直线AB求交点, ∴F(-,-), ④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=,勾股定理得出,AN=,做A关于N的对称点即为F,AF=,过F做y轴垂线,垂足为G,FG=×=, ∴F(-,). 综上所述,满足条件的点有四个:F1(3,8);F2(-3,0); F3(-,-);F4(-,).
复制答案
考点分析:
相关试题推荐
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

manfen5.com 满分网 查看答案
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数manfen5.com 满分网(k为常数,k≠0)的图象相交点A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

manfen5.com 满分网 查看答案
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;
(2)AD2+DB2=DE2

manfen5.com 满分网 查看答案
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
查看答案
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.