在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:
①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(
,90°),得到△ADE,则线段BD的长为______cm;
(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O
1,O
2,O
3分别是这三个正方形的对角线交点,试分别利用△AO
1O
3与△ABI,△CIB与△CAO
2之间的关系,运用旋转相似变换的知识说明线段O
1O
3与AO
2之间的关系.
查看答案