满分5 > 初中数学试题 >

如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E. (...

如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.

manfen5.com 满分网
(1)根据两组对边分别平行证得四边形AECD是平行四边形,只需证明四边形AECD的两邻边相等即可.根据AC平分∠BAD,以及CE∥AD,易证得∠EAC=∠ECA,由此可知AE=CE,即四边形AECD是菱形; (2)连DE,DE交AC于F,根据菱形的性质,对角线互相垂直且平分有:DE垂直平分AC,则EF是△ABC的中位线,有EF∥BC,则BC⊥AC,由此可证得△ABC是直角三角形. (1)证明:∵AB∥CD,即AE∥CD, 又∵CE∥AD,∴四边形AECD是平行四边形. ∵AC平分∠BAD,∴∠CAE=∠CAD, 又∵AD∥CE,∴∠ACE=∠CAD, ∴∠ACE=∠CAE, ∴AE=CE, ∴四边形AECD是菱形; (2)【解析】 △ABC是直角三角形. 证法一:∵E是AB中点,∴AE=BE. 又∵AE=CE,∴BE=CE,∴∠B=∠BCE, ∵∠B+∠BCA+∠BAC=180°, ∴2∠BCE+2∠ACE=180°,∴∠BCE+∠ACE=90°. 即∠ACB=90°, ∴△ABC是直角三角形. 证法二:连DE,由四边形AECD是菱形,得到DE⊥AC,且平分AC, 设DE交AC于F, ∵E是AB的中点,且F为AC中点, ∴EF∥BC.∠AFE=90°, ∴∠ACB=∠AFE=90°, ∴BC⊥AC, ∴△ABC是直角三角形.
复制答案
考点分析:
相关试题推荐
某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入800万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1800万元.
(1)求A市投资“改水工程”的年平均增长率;
(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?
查看答案
如图,已知在⊙O中,AB=4manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30度.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

manfen5.com 满分网 查看答案
如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D,
(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹);
(2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.

manfen5.com 满分网 查看答案
计算与求【解析】

①计算manfen5.com 满分网÷manfen5.com 满分网
②解方程:x2+3x+1=0
查看答案
如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.