满分5 > 初中数学试题 >

如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度. (1...

如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.
manfen5.com 满分网
(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,∴∠AOC=60° (2)由CP与⊙O相切,OC是半径.得CP⊥OC∴∠P=90°-∠AOC=30°∴PO=2 CO=8 (3)如图,当S△MAO=S△CAO时,动点M的位置有四种. ①作点C关于直径AB的对称点M1,连接AM1,OM1. ②过点M1作M1M2∥AB交⊙O于点M2,连接AM2,OM2, ③过点C作CM3∥AB交⊙O于点M3,连接AM3,OM3, ④当点M运动到C时,M与C重合, 求得每种情况的OM转过的度数,再根据弧长公式求得弧AM的长. 【解析】 (1)∵在△ACO中,∠OAC=60°,OC=OA ∴△ACO是等边三角形∴∠AOC=60°. (2)∵CP与⊙O相切,OC是半径. ∴CP⊥OC,又∵∠OAC=∠AOC=60°, ∴∠P=90°-∠AOC=30°, ∴在Rt△POC中,CO=PO=4, 则PO=2CO=8; (3)如图,(每找出一点并求出弧长得1分) ①作点C关于直径AB的对称点M1,连接AM1,OM1. 易得S△M1AO=S△CAO,∠AOM1=60° ∴ ∴当点M运动到M1时,S△MAO=S△CAO, 此时点M经过的弧长为. ②过点M1作M1M2∥AB交⊙O于点M2,连接AM2,OM2,易得S△M2AO=S△CAO. ∴∠AOM1=∠M1OM2=∠BOM2=60° ∴或 ∴当点M运动到M2时,S△MAO=S△CAO,此时点M经过的弧长为. ③过点C作CM3∥AB交⊙O于点M3,连接AM3,OM3,易得S△M3AO=S△CAO ∴∠BOM3=60°, ∴或 ∴当点M运动到M3时,S△MAO=S△CAO,此时点M经过的弧长为. ④当点M运动到C时,M与C重合,S△MAO=S△CAO, 此时点M经过的弧长为或.
复制答案
考点分析:
相关试题推荐
某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5manfen5.com 满分网名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据右图,分别求出两班复赛的平均成绩和方差;
(2)根据(1)的计算结果,分析哪个班级的复赛成绩比较稳定.
查看答案
已知:如图,EF是矩形ABCD的对角线AC的垂直平分线,EF与对角线AC及边AD、BC分别交于点O、E、F.
(1)求证:四边形AFCE是菱形;
(2)如果FE=2ED,求AE:ED的值.

manfen5.com 满分网 查看答案
(1)解方程:x2+3x+1=0;
(2)计算:manfen5.com 满分网
查看答案
如图,将正方形纸片ABCD分别沿AE、BF折叠(点E、F是边CD上两点),使点C与D在形内重合于点P处,则∠EPF=    度.
manfen5.com 满分网 查看答案
如图:⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数,则满足条件的点P有    个.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.