满分5 > 初中数学试题 >

如图,抛物线y=x2+3与x轴交于点A,点B,与直线y=x+b相交于点B,点C,...

如图,抛物线y=manfen5.com 满分网x2+3与x轴交于点A,点B,与直线y=manfen5.com 满分网x+b相交于点B,点C,直线y=manfen5.com 满分网x+b与y轴交于点E.
(1)写出直线BC的解析式.
(2)求△ABC的面积.
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

manfen5.com 满分网
(1)令y=0代入y=x2+3求出点A,B的坐标.把B点坐标代入y=x+b求出BC的解析式. (2)联立方程组求出B.C的坐标.求出AB,CD的长后可求出三角形ABC的面积. (3)过N点作NP⊥MB,证明△BNP∽△BEO,由已知令y=0求出点E的坐标,利用线段比求出NP,BE的长.求出S与t的函数关系式后利用二次函数的性质求出S的最大值. 【解析】 (1)在y=x2+3中,令y=0 ∴x2+3=0 ∴x1=2,x2=-2 ∴A(-2,0),B(2,0)(2分) 又点B在y=x+b上 ∴, ∴BC的解析式为y=x+.(2分) (2)由, 得,. ∴,B(2,0),(2分) ∴AB=4,, ∴.(2分) (3)过点N作NP⊥MB于点P ∵EO⊥MB ∴NP∥EO ∴△BNP∽△BEO ∴(1分) 由直线可得: ∴在△BEO中,BO=2,EO=,则BE= ∴, ∴NP=t(1分) ∴S=.t.(4-t)=-t2+t(0<t<4)=-(t-2)2+(1分) ∵此抛物线开口向下, ∴当t=2时,S最大= ∴当点M运动2秒时,△MNB的面积达到最大,最大为.(1分)
复制答案
考点分析:
相关试题推荐
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2
(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
查看答案
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1=______
查看答案
2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用是每车380元,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元.若设问这批货物有x车.
(1)用含x的代数式表示每车从宁波港到B地的海上运费;
(2)求x的值.
查看答案
甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3,4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
查看答案
如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.