满分5 > 初中数学试题 >

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥...

(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的manfen5.com 满分网
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的manfen5.com 满分网

manfen5.com 满分网
(1)本题要依靠辅助线的帮助.连接OA,OC,证明Rt△OFC≌Rt△OGC≌Rt△OGA后求得S△OAC=S△ABC,易证SOFCG=S△ABC. (2)本题有多种解法.连接OA,OB和OC,证明△AOC≌△COB≌△BOA,求出∠AOC以及∠DOE之间的关系即可. 证明:(1)如图1,连接OA,OC; 因为点O是等边三角形ABC的外心, 所以Rt△OFC≌Rt△OGC≌Rt△OGA, S四边形OFCG=2S△OFC=S△OAC, 因为S△OAC=S△ABC, 所以S四边形OFCG=S△ABC. (2)证法一: 连接OA,OB和OC,则 △AOC≌△COB≌△BOA,∠1=∠2; 设OD交BC于点F,OE交AC于点G, ∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°, ∴∠3=∠5; 在△OAG和△OCF中 , ∴△OAG≌△OCF, ∴S△OAG=S△OCF, ∴S△OAG+S△OGC=S△OCF+S△OGC, 即S四边形OFCG=S△OAC=S△ABC; 证法二: 设OD交BC于点F,OE交AC于点G; 作OH⊥BC,OK⊥AC,垂足分别为H、K; 在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°, ∴∠HOK=360°-90°-90°-60°=120°, 即∠1+∠2=120度; 又∵∠GOF=∠2+∠3=120°, ∴∠1=∠3, ∵AC=BC, ∴OH=OK, ∴△OGK≌△OFH, ∴S四边形OFCG=S四边形OHCK=S△ABC.
复制答案
考点分析:
相关试题推荐
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
查看答案
已知关于x的方程(x-3)(x-2)-p2=0
(1)无论p为何值时,方程(x-3)(x-2)-p2=0总有两个不相等的实数根吗?给出你的答案并说明理由.(2)若方程的一个根是x1=1,求方程的另一个根x2及p的值.
查看答案
如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为10cm,∠A=60°,求CD的长.

manfen5.com 满分网 查看答案
在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点).
(1)画出△ABC绕点O逆时针旋转90°后的△A′B′C′;
(2)求△A′B′C′的面积.

manfen5.com 满分网 查看答案
如图,三个半径为r的等圆两两外切,且与△ABC的三边分别相切,求△ABC的边长.(结果保留π)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.