满分5 > 初中数学试题 >

如图,抛物线的顶点坐标是,且经过点A(8,14). (1)求该抛物线的解析式; ...

如图,抛物线的顶点坐标是manfen5.com 满分网,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

manfen5.com 满分网
(1)已知了抛物线的顶点坐标,可用顶点式的二次函数通式设出抛物线的解析式.然后根据A点的坐标即可求出抛物线的解析式. (2)根据(1)得出的抛物线的解析式即可求出B、C、D的坐标. (3)如果延长AC交y轴于E点.根据A、C的坐标可求出直线AC的解析式,不难得出E点的坐标,这时可发现E点正好和B点关于x轴对称,也就是说x轴是线段BE的垂直平分线,因此x轴上任意点到B、E两点的距离都相等,那么AE=AC+BC,AP+PC=AP+PE,因此本题要分两种情况进行讨论: ①当P、C重合时,此时AC+BC=AP+PC ②当P、C不重合时,在三角形AEP中,根据三角形三边之间的关系可得出AP+PE>AE,根据前面分析的结论可得出AP+PC>AC+BC. 综合上述两种情况:AP+BP≥AC+BC. 【解析】 (1)设抛物线的解析式为y=a(x-)2- ∵抛物线经过A(8,14), ∴14=a(8-)2-, 解得:a= ∴y=(x-)2-(或) (2)令x=0得y=2, ∴B(0,2) 令y=0得x2-x+2=0, 解得x1=1、x2=4 ∴C(1,0)、D(4,0) (3)结论:PA+PB≥AC+BC 理由是:①当点P与点C重合时,有PA+PB=AC+BC ②当点P异于点C时, ∵直线AC经过点A(8,14)、C(1,0), ∴直线AC的解析式为y=2x-2 设直线AC与y轴相交于点E,令x=0,得y=-2, ∴E(0,-2), 则点E(0,-2)与B(0,2)关于x轴对称 ∴BC=EC,连接PE,则PE=PB, ∴AC+BC=AC+EC=AE, ∵在△APE中,有PA+PE>AE ∴PA+PB=PA+PE>AE=AC+BC 综上所得AP+BP≥AC+BC.
复制答案
考点分析:
相关试题推荐
如图,某建筑工地上一钢管的横截面是圆环形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于点A,B(AB与内圆相切于点C,其中点A在直尺的零刻度处).请观察图形,写出线段AB的长(精确到1cm),并根据得到的数据计算该钢管的横截面积.(结果用含π的式子表示)

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AE是∠BAC外角∠CAD的平分线,交BC延长线于点E,延长EA交⊙O于点F,连接BF,求证:FB2=FA•FE.

manfen5.com 满分网 查看答案
某校学生会准备调查初中九年级同学每天(除课间操外)的课外锻炼时间.
(1)确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到操场上去询问参加锻炼的同学”;丙同学说:“我到九年级每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理;
(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将其补充完整;(注:图2中相邻两虚线形成的圆心角为30度.)
(3)若该校初中九年级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大20分钟钟的人数,并根据调查情况向学生会提出一条建议.
manfen5.com 满分网
查看答案
如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.manfen5.com 满分网
(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?
(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.
查看答案
已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,
(1)求证:无论k为何值时,方程总有两个不相等的实数根;
(2)k为何值时,△ABC是以BC为斜边的直角三角形;
(3)k为何值时,△ABC是等腰三角形,并求△ABC的周长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.