满分5 > 初中数学试题 >

如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=...

如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=   
manfen5.com 满分网
点P是直线l上的一个动点,因而点P与线段AO有三种位置关系,在线段AO上,点P在OB上,点P在OA的延长线上.分这三种情况进行讨论即可. 【解析】 ①根据题意,画出图(1), 在△QOC中,OC=OQ, ∴∠OQC=∠OCP, 在△OPQ中,QP=QO, ∴∠QOP=∠QPO, 又∵∠AOC=30°, ∴∠QPO=∠OCP+∠AOC=∠OCP+30°, 在△OPQ中,∠QOP+∠QPO+∠OQC=180°, 即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°, 整理得,3∠OCP=120°, ∴∠OCP=40°. ②当P在线段OA的延长线上(如图2) ∵OC=OQ, ∴∠OQP=(180°-∠QOC)×①, ∵OQ=PQ, ∴∠OPQ=(180°-∠OQP)×②, 在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③, 把①②代入③得: 60°+∠QOC=∠OQP, ∵∠OQP=∠QCO, ∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°, ∴∠QOC=20°,则∠OQP=80° ∴∠OCP=100°; ③当P在线段OA的反向延长线上(如图3), ∵OC=OQ, ∴∠OCP=∠OQC=(180°-∠COQ)×①, ∵OQ=PQ, ∴∠P=(180°-∠OQP)×②, ∵∠AOC=30°, ∴∠COQ+∠POQ=150°③, ∵∠P=∠POQ,2∠P=∠OCP=∠OQC④, ①②③④联立得 ∠P=10°, ∴∠OCP=180°-150°-10°=20°. 故答案为:40°、20°、100°.
复制答案
考点分析:
相关试题推荐
如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在A′处,若AE=a,AB=b,BF=c,请写出a,b,c之间的一个等量关系   
manfen5.com 满分网 查看答案
过⊙O内一点M的最长弦为10 cm,最短弦长为8 cm,那么OM的长为    cm. 查看答案
如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为    度.
manfen5.com 满分网 查看答案
已知⊙O1和⊙O2的半径分别是2和4,01O2=6,则⊙O1与⊙O2的位置关系是    查看答案
若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为    cm. 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.