满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,A...

如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
(1)根据三角形相似的判定定理求出△BHD∽△BAC,根据相似三角形的性质求出DH的长; (2)根据△RQC∽△ABC,根据三角形的相似比求出y关于x的函数关系式; (3)画出图形,根据图形进行讨论: ①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM.由于∠1+∠2=90°,∠C+∠2=90°,∴∠1=∠C. ∴cos∠1=cosC==,∴=,即可求出x的值; ②当PQ=RQ时,-x+6=,x=6; ③当PR=QR时,则R为PQ中垂线上的点,于是点R为EC的中点,故CR=CE=AC=2.由于tanC==,x=. 【解析】 (1)在Rt△ABC中, ∵∠A=90°,AB=6,AC=8, ∴BC==10. ∵∠DHB=∠A=90°,∠B=∠B. ∴△BHD∽△BAC, ∴=, ∴DH=•AC=×8=(3分) (2)∵QR∥AB, ∴∠QRC=∠A=90°. ∵∠C=∠C, ∴△RQC∽△ABC, ∴=,∴=, 即y关于x的函数关系式为:y=x+6.(6分) (3)存在,分三种情况: ①当PQ=PR时,过点P作PM⊥QR于M,则QM=RM. ∵∠1+∠2=90°,∠C+∠2=90°, ∴∠1=∠C. ∴cos∠1=cosC==, ∴=, ∴=, ∴x=. ②当PQ=RQ时,-x+6=, ∴x=6. ③作EM⊥BC,RN⊥EM, ∴EM∥PQ, 当PR=QR时,则R为PQ中垂线上的点, ∴EN=MN, ∴ER=RC, ∴点R为EC的中点, ∴CR=CE=AC=2. ∵tanC==, ∴=, ∴x=. 综上所述,当x为或6或时,△PQR为等腰三角形. (12分)
复制答案
考点分析:
相关试题推荐
大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;
manfen5.com 满分网
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=manfen5.com 满分网x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是manfen5.com 满分网.求点M的坐标.
manfen5.com 满分网
查看答案
如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动(点Q到达点C运动停止).如果点P,Q分别从点A,B同时出发t秒(t>0)
(1)t为何值时,PQ=6cm?
(2)t为何值时,可使得△PBQ的面积等于8cm2

manfen5.com 满分网 查看答案
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.

manfen5.com 满分网 查看答案
为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm)

平均数

方差
完全符合
要求个数
A    200.026    2
  B    20  SB2    5
根据测试得到的有关数据,试解答下列问题:
(1)考虑平均数与完全符合要求的个数,你认为______的成绩好些;
(2)计算出SB2的大小,考虑平均数与方差,说明谁的成绩好些;
(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.manfen5.com 满分网
查看答案
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.