如图1,Rt△ABC中,∠A=90°,tanB=
,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).
(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.请根据上述对话,帮他们解答这个问题.
考点分析:
相关试题推荐
某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
查看答案
如图所示,我市某中学数学课外活动小组的同学,利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(精确到0.01m)
查看答案
(任选做一题)
(1)如图,在平行四边形ABCD中,E是AD上的一点.求证:AE•OB=OE•CB;
(2)已知如图,∠BAC=90°,AD⊥BC,AE=EC,ED延长线交AB的延长线于点F.
求证:①△DBF∽△ADF;②
.
查看答案
解方程:(1)3x(x+2)=5(x+2)(2)
|-cot60°|+
.
查看答案