(1)用配方法把二次函数y=x
2-4x+3变成y=(x-h)
2+k的形成.
(2)在直角坐标系中画出y=x
2-4x+3的图象.
(3)若A(x
1,y
1),B(x
2,y
2)是函数y=x
2-4x+3图象上的两点,且x
1<x
2<1,请比较y
1,y
2的大小关系.(直接写结果)
(4)把方程x
2-4x+3=2的根在函数y=x
2-4x+3的图象上表示出来.
考点分析:
相关试题推荐
如图,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AB=6cm.把△ABC以点B为中心逆时针旋转,使点C旋转到AB边的延长线上得到Rt△A
1BC
1.
(1)作出Rt△A
1BC
1(不要求写作法);
(2)用阴影表示旋转过程中边AC扫过的图形,然后求出它的面积(结果用π表示).
查看答案
期末补充习题:二次函数y=ax
2+bx+c(a≠0)的图象如图所示,根据图象可知:当k______时,方程ax
2+bx+c=k有两个不相等的实数根.
查看答案
如图,正方形ABCD的边长为5cm,动点P从点C出发,沿折线C-B-A-D向终点D运动,速度为acm/s;动点Q从点B出发,沿对角线BD向终点D运动,速度为
cm/s.当其中一点到达自己的终点时,另一点也停止运动.当点P、点Q同时从各自的起点运动时,以PQ为直径的⊙O与直线BD的位置关系也随之变化,设运动时间为t(s).
(1)写出在运动过程中,⊙O与直线BD所有可能的位置关系______;
(2)在运动过程中,若a=3,求⊙O与直线BD相切时t的值;
(3)探究:在整个运动过程中,是否存在正整数a,使得⊙O与直线BD相切两次?若存在,请直接写出符合条件的两个正整数a及相应的t的值;若不存在,请说明理由.
查看答案
阅读材料:
我们学过二次函数的图象的平移,如:将二次函数y=2x
2的图象沿x轴向左平移3个单位长度得到函数y=2(x+3)
2的图象,再沿y轴向下平移1个单位长度,得到函数y=2(x+3)
2-1的图象.
类似的,将一次函数y=2x的图象沿x轴向右平移1个单位长度可得到函数y=2(x-1)的图象,再沿y轴向上平移1个单位长度,得到函数y=2(x-1)+1的图象.
解决问题:
(1)将一次函数y=-x的图象沿x轴向右平移2个单位长度,再沿y轴向上平移3个单位长度,得到函数 ______的图象;
(2)将
的图象沿y轴向上平移3个单位长度,得到函数 ______的图象,再沿x轴向右平移1个单位长度,得到函数 ______的图象;
(3)函数
的图象可由哪个反比例函数的图象经过怎样的变换得到?
查看答案
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;
②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C______;D(______);
②⊙D的半径=______
查看答案