满分5 > 初中数学试题 >

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接D...

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
manfen5.com 满分网
(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG. (2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG. (3)结论依然成立.还知道EG⊥CG. (1)证明:∵四边形ABCD是正方形, ∴∠ACB=90°, 在Rt△FCD中, ∵G为DF的中点, ∴CG=FD, 同理,在Rt△DEF中, EG=FD, ∴CG=EG. (2)【解析】 (1)中结论仍然成立,即EG=CG. 证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点. 在△DAG与△DCG中, ∵AD=CD,∠ADG=∠CDG,DG=DG, ∴△DAG≌△DCG(SAS), ∴AG=CG; 在△DMG与△FNG中, ∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG, ∴△DMG≌△FNG(ASA), ∴MG=NG; 在矩形AENM中,AM=EN, 在△AMG与△ENG中, ∵AM=EN,∠AMG=∠ENG,MG=NG, ∴△AMG≌△ENG(SAS), ∴AG=EG, ∴EG=CG. 证法二:延长CG至M,使MG=CG, 连接MF,ME,EC, 在△DCG与△FMG中, ∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG≌△FMG. ∴MF=CD,∠FMG=∠DCG, ∴MF∥CD∥AB, ∴EF⊥MF. 在Rt△MFE与Rt△CBE中, ∵MF=CB,EF=BE, ∴△MFE≌△CBE ∴∠MEF=∠CEB. ∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°, ∴△MEC为直角三角形. ∵MG=CG, ∴EG=MC, ∴EG=CG. (3)【解析】 (1)中的结论仍然成立.理由如下: 过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N. 由于G为FD中点,易证△CDG≌△MFG,得到CD=FM, 又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°, ∴△MEC是等腰直角三角形, ∵G为CM中点, ∴EG=CG,EG⊥CG.
复制答案
考点分析:
相关试题推荐
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
查看答案
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1=______
查看答案
(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.
manfen5.com 满分网( );②manfen5.com 满分网( );
manfen5.com 满分网( );④manfen5.com 满分网( )
(2)你判断完以上各题之后,发现了什么规律请用含有n的式子将规律表示出来,并注明n的取值范围:______
查看答案
商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价-进价)
查看答案
为了向建国六十周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是:①先裁下了一张长BC=20cm,宽AB=16cm的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处,…请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
(2)计算EC的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.